An Overview of the Trimaran Compiler Infrastructure
Infrastructure Goals

• To provide a vehicle for implementation and experimentation for state of the art research in compiler techniques for instruction-level parallel architectures.
 – Currently, the infrastructure is oriented towards Explicitly Parallel Instruction Computing (EPIC) architectures.
 • But can also support compiler research for Superscalar architectures.
 – Primarily, “back-end” compiler research
 • instruction scheduling, register allocation, and machine dependent optimizations.
Terms and Definitions

- **ILP (Instruction-Level Parallelism)**
 - more than one operation issued per clock cycle within a single CPU
- **EPIC (Explicitly Parallel Instruction Computing)**
 - ILP under compiler control
 - A single instruction may contain many operations
 - Compiler determines operation dependences and specifies which operations may execute concurrently
Infrastructure Support

The infrastructure is comprised of the following components:

– A machine description language, HMDES, for describing ILP architectures.

– A parameterized ILP Architecture called HPL-PD
 • Current instantiation in the infrastructure is as a EPIC architecture

– A compiler front-end for C, performing parsing, type checking, and a large suite of high-level (i.e. machine independent) optimizations.
 • This is the IMPACT module (IMPACT group, University of Illinois)
Infrastructure Support (cont)

- A compiler back-end, parameterized by a machine description, performing instruction scheduling, register allocation, and machine-dependent optimizations.

 - Each stage of the back-end may easily be replaced or modified by a compiler researcher.
 - Primarily implemented as part of the ELCOR effort by the CAR Group at HP Labs.
 - Augmented with a scalar register allocator from the ReaCT-ILP group at NYU.
Infrastructure Support (cont)

– An extensible IR (intermediate program representation)

• Has both an internal and textual representation, with conversion routines between the two. The textual language is called Rebel.

• Supports modern compiler techniques by representing control flow, data and control dependence, and many other attributes.

• Easy to use in its internal representation (clear C++ object hierarchy) and textual representation (human-readable)
Infrastructure Support (cont)

– A cycle-level simulator of the HPL-PD architecture which is configurable by a machine description and provides run-time information on execution time, branch frequencies, and resource utilization.

 • This information can be used for profile-driven optimizations, as well as to provide validation of new optimizations.
 • The HPL-PD simulator was implemented by the ReaCT_ILP group at NYU.
Infrastructure Support (cont)

- An Integrated graphical user interface (GUI) for configuring and running the Trimaran system.
System Organization

- A compiler researcher’s view of the infrastructure:
The research process

The infrastructure is used for designing, implementing, and testing new compilation modules to be incorporated into the back end.

– These phases may augment or replace existing ILP optimization modules.

– New modules may be the result of research in scheduling, register allocation, program analysis, profile-driven compilation, etc.

 • For example, NYU has added a region-based register allocator.
Why use Trimaran?

• It is especially geared for ILP research
• It provides a rich compilation framework
 – Parameterized ILP architecture (HPL-PD)
 – Machine description language
 – Single intermediate program representation
 • provides mechanism for representing wide range of program information
 – Cycle-level execution simulation
 • provides run-time information for profile-driven compilation
More reasons…

- The framework is populated with a large number of existing compilation modules
 - provides leverage for new compiler research
 - supports meaningful experimentation, rather than simply running toy programs.
 - Full compilation and execution path already exists
- There’s a commitment on our part to releasing a robust, tested, and documented software system.
Case Study

• Here’s a data point on the usability of Trimaran:
 – We implemented a sophisticated region-based register allocator in the back end.
 – 2 person-months implementation time + 1 person-month testing and debugging
 • Once familiar with infrastructure (several more months)
 • Very short development time for a real register allocator in a serious compiler.
The Trimaran Tutorial

• The full Trimaran Tutorial has been given at:
 – IEEE Symposium on Microarchitecture (MICRO-31), Dallas, December 1998
Since the Release...

- The Trimaran Web Site has been visited more than 5000 times.
- The Trimaran system has been downloaded to over 900 sites.
 - The 50mb system is currently ported to HP-UX.
 - A Linux port is due in mid-June.
 - A Solaris port is planned.
 - Simulator is being improved to provide measurements of cache performance.
- Embodies over 100 person-years of work.